Machine Learning for Big Data: how to predict customers loyalty

Dmitry Efimov

American University of Sharjah

November 18, 2016

Outline

Problem formulation

Cross validation and loss functions

Feature engineering

How to handle big data?

Scope of models

Problem formulation

Example 1 (Deloitte competition)

- about 400 000 policies
- about 11 000 000 records

kaggle.com/c/deloitte-churn-prediction

Example 2 (Etihad Airline)

Related HOWTO

How to estimate the accuracy?

How to work with different historical depths?

How to handle huge amount of historical information?

How to choose the predictive model?

How to estimate the accuracy?

- cross validation is a key procedure
- choose an appropriate loss function
- keep distributions:

$$p(x) \sim p_{train}(x) \sim p_{validation}(x) \sim p_{test}(x)$$

Example of loss functions

y - target variable $x = (x_1, ..., x_n)$ - vector of features $\hat{y} = f(x)$ - predictive model

Mean squared error

$$E\left[(y-\hat{y})^2
ight]$$

LogLoss

$$E\left[y\cdot\ln\hat{y}+(1-y)\cdot\ln(1-\hat{y})\right]$$

Area under the curve (AUC)

P(positive example is higher than negative example)

T.Hastie, R.Tibshirani and J.Friedman "The elements of statistical learning." *Springer*, 2009

How to work with different historical depths?

- feature engineering is a key procedure
- unsupervised technique is very useful
- visualize your data

Example of features

- Statistics by the historical features with "sliding window"
 - maximum during the last month
 - the average change during the last year
- Unsupervised features
 - t-distributed stochastic neighbor embedding (t-SNE)
 - principal component analysis (PCA)
 - autoencoders
- Other ideas
 - binary feature by discretized continuous features

▶ ...

¹lvdmaaten.github.io/tsne/

²www.deeplearningbook.org

Feature engineering in Deloitte

Completed • \$70,000 • 37 teams As the World Churns

Tue 22 Oct 2013 - Sat 21 Dec 2013 (2 years ago)

Dashboard

Public Leaderboard - As the World Churns

This leaderboard is calculated on approximately 25% of the test data. The final results will be based on the other 75%, so the final standings may be different.

See someone using multiple accounts? Let us know.

#	∆1w	Team Name #model uploaded * In the money	Score 🕑	Entries	Last Submission UTC (Best - Last Submission)
1		Dmitry Efimov *	0.81917	155	Sat, 21 Dec 2013 14:21:48 (-20h)
2	-	Leustagos & Gxav 🇈 *	0.81869	78	Sat, 21 Dec 2013 22:04:03 (-6.3h)
3	↑6	Michael Jahrer & Jeong-Yoon Lee 🇈 *	0.81721	73	Sat, 21 Dec 2013 22:26:29 (-0.1h)
4	11	ivo and BreakfastPirate 🎩	0.81457	174	Sat, 21 Dec 2013 22:05:08 (-4.4h)
5	↓2	Datrik Intelligence	0.81442	7	Sat, 21 Dec 2013 23:46:07 (-0.3h)
6	_	FAndy & Sen 🎩	0.81326	72	Sat, 21 Dec 2013 19:36:50
7	ţЗ	An apple a day 🌲	0.81237	75	Sat, 21 Dec 2013 23:47:07 (-1.6h)
8	†12	agdavis ‡	0.81176	10	Sat, 21 Dec 2013 16:53:22
9	new	alegro	0.80947	5	Sat, 21 Dec 2013 23:26:47 (-19.7h)
10	ţ3	S&B500 #	0.80918	144	Sat, 21 Dec 2013 22:30:42 (-0.6h)

Example of visualization using t-SNE features

Visualization helps to catch important facts about data

kaggle.com/c/santander-customer-satisfaction

How to handle huge amount of historical information?

- downsampling (remember to keep distributions)
- batch optimization
- online algorithms
- parallel computing
- non-standard ideas

How to choose the predictive model?

- Parametric
 - Regressions
 - Kernel methods (SVM)
 - Bayesian approach
 - Neural networks
- Non parametric
 - Decision trees
- Ensembling
 - Boosting

²Lectures by Andrew Ng on YouTube

¹github.com/diefimov/MTH594_MachineLearning

Regressions (general framework)

• Predictive model depends on parameters θ

$$\hat{y}=f(x,\theta)$$

• To find θ we formulate an optimization problem

$$\hat{\theta} = \arg\min_{\theta} L(y, f(x, \theta)),$$

where *L* is a loss function

 Use optimization algorithm (e.g., SGD) to find the best values for θ

Bayesian approach

Predictive model is a parametric family of distributions

$$p(x, y; \theta) = p(x, y \mid \theta) \cdot p(\theta) = p(\theta \mid x, y) \cdot p(x, y)$$

• To find θ we formulate an optimization problem

$$\hat{\theta} = \arg \max_{\theta} p(\theta \mid x, y),$$

Use Bayes rule to solve it

$$p(\theta \mid x, y) = \frac{p(x, y \mid \theta)p(\theta)}{p(x, y)} \propto p(x, y \mid \theta) \cdot p(\theta)$$

(posterior \propto likelihood \cdot prior)

E.T.Janes "Probability theory: logic of science." *Cambridge University Press*, 2003

Decision trees

Predictive model is non-parametric

$$\hat{y} = f(x)$$

The resulted model can be visualized as

T.Hastie, R.Tibshirani and J.Friedman "The elements of statistical learning." *Springer*, 2009

Boosting

$$\hat{y}=f(x_1,\ldots,x_n)=\sum_{k=0}^N f_k(x_1,\ldots,x_n)$$

Algorithm 1 General boosting algorithm

1:
$$f_0(x) = E[y]$$

3: evaluate current errors
$$z = y - \sum_{s=0}^{k-1} f_s(x_1, \dots, x_n)$$

4: train model
$$f_k$$
 to predict z
5: **return** $\sum_{k=0}^{N} f_k(x_1, \dots, x_n)$

General strategy

- Investigate the data manually
- Choose loss function
- Define the cross validation scheme
- Generate features
- Choose the algorithm

Thank you! Questions?

Dmitry Efimov diefimov@gmail.com kaggle.com/efimov github.com/diefimov