
Gradient Boosting Trees:
theory and applications

Dmitry Efimov

November 05, 2016



Outline

Decision trees

Boosting

Boosting trees

Metaparameters and tuning strategies

How-to-use remarks



Regression tree

X[12] <= 7.865
mse = 0.0353
samples = 339
value = 0.4594

X[5] <= 7.437
mse = 0.0313
samples = 106
value = 0.6485

True

X[12] <= 16.085
mse = 0.0134
samples = 233
value = 0.3734

False

X[7] <= 1.557
mse = 0.0159
samples = 84

value = 0.5857

X[9] <= 534.5
mse = 0.0175
samples = 22

value = 0.8881

mse = 0.0
samples = 3
value = 1.0

X[5] <= 6.797
mse = 0.0099
samples = 81

value = 0.5704

mse = 0.0038
samples = 44

value = 0.5056

mse = 0.0063
samples = 37

value = 0.6474

X[0] <= 0.5768
mse = 0.0082
samples = 21

value = 0.9095

mse = 0.0
samples = 1

value = 0.438

mse = 0.0069
samples = 15

value = 0.8733

mse = -0.0
samples = 6
value = 1.0

X[5] <= 6.603
mse = 0.0084
samples = 143
value = 0.4323

X[7] <= 2.0677
mse = 0.007
samples = 90

value = 0.2798

X[7] <= 1.2074
mse = 0.0062
samples = 129
value = 0.4166

X[5] <= 6.9825
mse = 0.0062
samples = 14

value = 0.5771

mse = 0.0
samples = 1
value = 1.0

mse = 0.0035
samples = 128
value = 0.412

mse = 0.0023
samples = 8

value = 0.5218

mse = 0.0019
samples = 6

value = 0.651

X[9] <= 551.5
mse = 0.0039
samples = 54

value = 0.2382

X[0] <= 0.7568
mse = 0.0053
samples = 36

value = 0.3422

mse = 0.0011
samples = 15

value = 0.2987

mse = 0.003
samples = 39
value = 0.215

mse = 0.0045
samples = 15

value = 0.3952

mse = 0.0024
samples = 21

value = 0.3044

Mean square error for node k :
1

mk

∑
i∈Rk

(
y (i) − µk

)2

mk - number of samples
µk - average



Classification tree
X[1] < 0.285
error = 0.497

samples = 134
prob = 0.537

X[0] < -0.622
error = 0.224
samples = 70
prob = 0.871

X[0] < 1.133
error = 0.285
samples = 64
prob = 0.172

error = 0.0
samples = 4
prob = 0.0

X[1] < -0.109
error = 0.14

samples = 66
prob = 0.924

X[1] < 0.328
error = 0.158
samples = 58
prob = 0.086

error = 0.0
samples = 6
prob = 1.0

error = 0.0
samples = 42

prob = 1.0

X[0] < 0.568
error = 0.33

samples = 24
prob = 0.792

error = 0.5
samples = 4
prob = 0.5

X[1] < 0.602
error = 0.105
samples = 54
prob = 0.056

error = 0.0
samples = 11

prob = 1.0

X[0] < 1.168
error = 0.473
samples = 13
prob = 0.615

X[1] < 0.47
error = 0.255
samples = 20
prob = 0.15

error = 0.0
samples = 34

prob = 0.0

error = 0.0
samples = 5
prob = 0.0

error = 0.0
samples = 8
prob = 1.0

error = 0.0
samples = 12

prob = 0.0

X[0] < -0.216
error = 0.469
samples = 8
prob = 0.375

error = 0.375
samples = 4
prob = 0.25

error = 0.5
samples = 4
prob = 0.5



Classification error (two classes example)
p - % of samples from one class in the node

I Misclassification error: min(p,1− p)
I Gini index: 2p(1− p)
I Cross-entropy: −p ln p − (1− p) ln(1− p)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

M
isc

la
ss

ific
at

io
n

ra
te

E
ntropy

G
in

i in
de

x

p

er
ro

r



Boosting (backfitting algorithm)

Generalized additive model:

ŷ = f (x1, . . . , xn) = α+ f1(x1) + f2(x2) + . . .+ fn(xn)

Algorithm 1 Backfitting algorithm for GAM

1: set initial values α =
1
m

m∑
i=1

y (i), fj = 0 for all j = 1, . . . ,n

2: repeat
3: for j = 1 to n do

4: evaluate working targets z(i) = y (i) − α−
n∑

k=1,k 6=j
fk (x

(i)
k )

5: train model with feature xj and target z to estimate fj
6: until convergence
7: return α, fj



Boosting (general idea)

Loss function for nonparametric model:

L(f ) =
1

2m

m∑
i=1

(y (i) − f (x (i)))2

I From backfitting algorithm: f new = f old + g, where g is a
building block algorithm

I Gradient Descent with respect to f : f new = f old − αdL
df

∣∣∣∣
f=f old

General idea: we train the building block algorithm with the
outputs

g = −dL
df

∣∣∣∣
f=f old



Boosting trees

Algorithm 2 Gradient Tree Boosting

1: Initialize f0(x) = arg min
µ

m∑
i=1

L(y (i), µ)

2: for k = 1 to K do
3: Compute working target r (i)k = −

(
dL
df

)∣∣∣∣
f=fk−1(x (i))

4: Fit a regression tree to the targets r (i)k with terminal nodes
Rkj , j = 1, . . . , Jk and compute

γkj = arg min
γ

∑
x (i)∈Rkj

L(y (i), fk−1(x (i)) + γ)

5: Update fk (x) = fk−1(x) +
Jk∑

j=1
γkj1{x ∈ Rkj}

6: return fK (x)



Metaparameters

I General: booster, seed, subsample, colsample bytree,
colsample bylevel, eval metric

I Optimization related: objective, eta, gamma, lambda,
alpha, num round, scale pos weight

I Tree related: max depth, min child weight



General metaparameters

I booster: gbtree, gblinear, dart

I seed

I subsample: number of training examples for each tree

I colsample bytree: number of features for each tree

I colsample bylevel: number of features for each tree node

I eval metric: rmse, mae, logloss, auc, map



Optimization and tree related metaparameters

Optimization:
I objective: reg:linear, binary:logistic, multi:softprob,

rank:pairwise
I eta: learning rate
I gamma: minimum loss reduction required
I lambda: L2 regularization
I alpha: L1 regularization
I scale pos weight: weights for classes
I num round: number of iterations

Tree:
I max depth: maximum depth of tree
I min child weight: minimum size of tree node



Tuning strategies

I Grid search:

parameter 1

pa
ra

m
et

er
2

•
•
•

•
•
•

•
•
•

I Randomized search:

parameter 1

pa
ra

m
et

er
2

•
•

•

•
•
•

•

•
•

I Manual tuning



When to apply xgboost? (just my observations)

I features of different origins: categorical, numerical, ordinal
I features are not correlated a lot
I the number of features is comparatively small
I the problem is not of some specific type (for example, not

image recognition or time series)
I the parametric approach cannot be used

General strategy
1. Use xgboost with basic parameters without tuning
2. Read literature about other approaches
3. Compare the results



Usecases

I relational datasets (Genentech, RiskyBusiness, Deloitte):
Ex.: github.com/diefimov/genentech 2016

I datasets with features of different origins (Otto):
Ex.: github.com/diefimov/otto 2015

I works for time series, but they should be converted to the
traditional format (West Nile, Western Australia):
Ex.: github.com/diefimov/west nile virus 2015

https://github.com/diefimov/genentech_2016
https://github.com/diefimov/otto_2015
https://github.com/diefimov/west_nile_virus_2015


References

T.Chen and C.Guestrin. ”XGBoost: A Scalable Tree
Boosting System.” In 22nd SIGKDD Conference on
Knowledge Discovery and Data Mining, 2016

https://xgboost.readthedocs.io/en/latest/

T.Hastie, R.Tibshirani and J.Friedman ”The elements of
statistical learning.” Springer, 2009

https://github.com/diefimov/MTH594 MachineLearning



Thank you! Questions?

Dmitry Efimov
diefimov@gmail.com

kaggle.com/efimov

github.com/diefimov


	Decision trees
	Boosting
	Boosting trees
	Metaparameters and tuning strategies
	How-to-use remarks

