Gradient Boosting Trees: theory and applications

Dmitry Efimov

November 05, 2016

Decision trees

Boosting

Boosting trees

Metaparameters and tuning strategies

How-to-use remarks

Regression tree

Mean square error for node k: $\frac{1}{r}$

$$\frac{1}{m_k}\sum_{i\in R_k} \left(y^{(i)}-\mu_k\right)^2$$

 m_k - number of samples

 μ_k - average

Classification tree

Classification error (two classes example)

- p % of samples from one class in the node
 - ► Misclassification error: min(p, 1 − p)
 - ▶ Gini index: 2p(1 − p)
 - Cross-entropy: $-p \ln p (1-p) \ln(1-p)$

Boosting (backfitting algorithm)

Generalized additive model:

$$\hat{y} = f(x_1, \ldots, x_n) = \alpha + f_1(x_1) + f_2(x_2) + \ldots + f_n(x_n)$$

Algorithm 1 Backfitting algorithm for GAM

1: set initial values
$$\alpha = \frac{1}{m} \sum_{i=1}^{m} y^{(i)}$$
, $f_j = 0$ for all $j = 1, ..., n$

- 2: repeat
- 3: **for** j = 1 **to** n **do**

4: evaluate working targets $z^{(i)} = y^{(i)} - \alpha - \sum_{k=1, k \neq j}^{n} f_k(x_k^{(i)})$

- 5: train model with feature x_j and target z to estimate f_j
- 6: until convergence
- 7: return α , f_j

Boosting (general idea)

Loss function for nonparametric model:

$$L(f) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - f(x^{(i)}))^2$$

- From backfitting algorithm: f^{new} = f^{old} + g, where g is a building block algorithm
- Gradient Descent with respect to f: $f^{new} = f^{old} \alpha \frac{dL}{df}\Big|_{f = f^{old}}$

General idea: we train the building block algorithm with the outputs

$$g = -rac{dL}{df}\Big|_{f=f^{old}}$$

Boosting trees

Algorithm 2 Gradient Tree Boosting

- 1: Initialize $f_0(x) = \arg\min_{\mu} \sum_{i=1}^m L(y^{(i)}, \mu)$
- 2: for k = 1 to *K* do
- 3: Compute working target $r_k^{(i)} = -\left(\frac{dL}{df}\right)\Big|_{f=f_{k-1}(x^{(i)})}$
- 4: Fit a regression tree to the targets $r_k^{(i)}$ with terminal nodes R_{kj} , $j = 1, ..., J_k$ and compute

$$\gamma_{kj} = \arg\min_{\gamma} \sum_{\boldsymbol{x}^{(i)} \in \boldsymbol{R}_{kj}} L(\boldsymbol{y}^{(i)}, \boldsymbol{f}_{k-1}(\boldsymbol{x}^{(i)}) + \gamma)$$

5: Update
$$f_k(x) = f_{k-1}(x) + \sum_{j=1}^{J_k} \gamma_{kj} \mathbb{1}\{x \in R_{kj}\}$$

6: return $f_{\mathcal{K}}(x)$

Metaparameters

General: booster, seed, subsample, colsample_bytree, colsample_bylevel, eval_metric

 Optimization related: objective, eta, gamma, lambda, alpha, num_round, scale_pos_weight

Tree related: max_depth, min_child_weight

General metaparameters

- booster: gbtree, gblinear, dart
- seed
- **subsample**: number of training examples for each tree
- colsample_bytree: number of features for each tree
- colsample_bylevel: number of features for each tree node
- eval_metric: rmse, mae, logloss, auc, map

Optimization and tree related metaparameters

Optimization:

- objective: reg:linear, binary:logistic, multi:softprob, rank:pairwise
- eta: learning rate
- gamma: minimum loss reduction required
- lambda: L2 regularization
- alpha: L1 regularization
- scale_pos_weight: weights for classes
- num_round: number of iterations

Tree:

- max_depth: maximum depth of tree
- min_child_weight: minimum size of tree node

Tuning strategies

Grid search:

Randomized search:

Manual tuning

When to apply xgboost? (just my observations)

- features of different origins: categorical, numerical, ordinal
- features are not correlated a lot
- the number of features is comparatively small
- the problem is not of some specific type (for example, not image recognition or time series)
- the parametric approach cannot be used

General strategy

- 1. Use xgboost with basic parameters without tuning
- 2. Read literature about other approaches
- 3. Compare the results

Usecases

- relational datasets (Genentech, RiskyBusiness, Deloitte): Ex.: github.com/diefimov/genentech_2016
- datasets with features of different origins (Otto): Ex.: github.com/diefimov/otto_2015
- works for time series, but they should be converted to the traditional format (West Nile, Western Australia): *Ex.: github.com/diefimov/west_nile_virus_2015*

References

- T.Chen and C.Guestrin. "XGBoost: A Scalable Tree Boosting System." In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
- https://xgboost.readthedocs.io/en/latest/
- T.Hastie, R.Tibshirani and J.Friedman "The elements of statistical learning." *Springer*, 2009
- https://github.com/diefimov/MTH594_MachineLearning

Thank you! Questions?

Dmitry Efimov diefimov@gmail.com kaggle.com/efimov github.com/diefimov